Determination of the decay exponent in mechanically stirred isotropic turbulence
نویسنده
چکیده
Direct numerical simulation is used to investigate the decay exponent of isotropic homogeneous turbulence over a range of Reynolds numbers sufficient to display both high and low Re number decay behavior. The initial turbulence is generated by the stirring action of the flow past many small randomly placed cubes. Stirring occurs at 1/30th of the simulation domain size so that the low-wavenumber and large scale behavior of the turbulent spectrum is generated by the fluid and is not imposed. It is shown that the decay exponent in the resulting turbulence matches the theoretical predictions for a k2 low-wavenumber spectrum at both high and low Reynolds numbers. The transition from high Reynolds number behavior to low Reynolds number behavior occurs relatively abruptly at a turbulent Reynolds number of around 250 (Reλ ≈ 41). C © 2011 Author(s). This article is distributed under a Creative Commons Attribution Non-Commercial Share Alike 3.0 Unported License. [doi:10.1063/1.3582815]
منابع مشابه
Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملScalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference
Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...
متن کاملThe energy decay in self-preserving isotropic turbulence revisited
The assumption of self-preservation permits an analytical determination of the energy decay in isotropic turbulence. Batchelor (1948), who was the first to carry out a detailed study of this problem, based his analysis on the assumption that the Loitsianskii integral is a dynamic invariant a widely accepted hypothesis that was later discovered to be invalid. Nonetheless, it appears that the sel...
متن کاملPower law of decaying homogeneous isotropic turbulence at low Reynolds number.
We focus on an estimate of the decay exponent (m) in the initial period of decay of homogeneous isotropic turbulence at low Taylor microscale Reynolds number R lambda (approximately equal to 20-50). Lattice Boltzmann simulations in a periodic box of 256(3) points are performed and compared with measurements in grid turbulence at similar R lambda. Good agreement is found between measured and cal...
متن کاملThe Universal Scaling Exponents of Anisotropy in Turbulence and their Measurement
The scaling properties of correlation functions of non-scalar fields (constructed from velocity derivatives) in isotropic hydrodynamic turbulence are characterized by a set of universal exponents. It is explained that these exponents also characterize the rate of decay of the effects of anisotropic forcing in developed turbulence. This set has never been measured in either numerical or laborato...
متن کامل